1. Derivatives Rules

1.1 Rules

derivative of x 에 대한 테이블

Rule Function Derivative
Constant c 0
Line x 1
  ax a
Square \(x^2\) \(2x\)
Square Root \(\sqrt{x}\) \(½ x^{-½}\)
Exponential \(e^x\) \(e^x\)
  \(a^x\) \(\ln(a) a^x\)
Logarithms \(\ln(x)\) 1/x
  \(\log_a(x)\) 1/ (x ln(a))
Trigonometry (x is radian) sin(X) cos(x)
  cos(x) -sin(x)
  tan(x) \(sec^2(x)\)
Inverse Trigonometry \(sin^{-1}(x)\) \(1/ \sqrt{(1-x^2)}\)
  \(cos^{-1}(x)\) \(-1/\sqrt{(1-x^2)}\)
  \(tan^{-1}(x)\) \(1/(1+x^2)\)

Function Rules!

Rule Function Derivative
Mutiplication by constant cf cf`
Power Rule \(x^n\) \(nx^{n-1}\)
Sum Rule f + g f’ + g’
Difference Rule f - g f’ - g’
Product Rule fg fg’ + f’g
Quotient Rule f/g \(\frac{f'g - g'f}{g^2}\)
Reciprocal Rule 1/f \(\frac{-f'}{f^2}\)
Chain Rule \(f \cdot g\) \((f \cdot g) g'\)
Chain Rule with ‘ f(g(x)) f’(g(x)) g’(x)

Examples

\(\frac{d}{dx} x^3\) 에 대한 값은?

derivative of \(x^3\) 은 power rule 을 적용합니다.

\[\begin{aligned} \frac{d}{dx} x^n &= nx^{n-1} \\ \frac{d}{dx} x^3 &= 3x^{3-1} = 3x^2 \end{aligned}\]

x^2 + x^4 에 대한 값은?

derivative of f + g = f’ + g’ 인 sum rule 을 사용.

\[\begin{aligned} \frac{d}{dx} \left[ x^2 + x^4 \right] = 2x + 4x^3 \end{aligned}\]

Chain Rule 예제

what is the derivative of \(f(x) = (3x + 1)^5\) ?

기본적으로 chain rule 은 바깥쪽에서 미분한번 하고, 안쪽에서 다시 미분하고.. 서로 곱하면 됨.
여기서 바깥쪽은 5제곱한 것이고, 안쪽은 3x + 1 임

\[f'(x) = 5(3x+1)^4 (3x +1)' = 5(3x+1)^4 \times 3\]