KFServing on EKS
- 1. Setting Up!
- 2. Iris Tutorial - {:.} 2.1 Deployment - {:.} 2.1.2 Inference from External Source - {:.} 2.1.3 Inference from Local Cluster Gateway - {:.} 2.1.4 Performance Test
1. Setting Up!
1.1 Before Installation
해당 문서는 2022년 01월 기준으로 썼으며 (계속 업데이트중), KServing 0.7 버젼을 기준으로 합니다.
- Kubeflow 설치 필요 없음 (하지마)
- Cert Manager (v1.0 이상) 설치 필요함
- Istio (latest) 설치해야 함
- Knative Serving (latest) 설치 해야 함
- Knative Eventing 설치 필요 없음 (하지마!)
추가적으로 현재 문서에서 KFServing 으로 되어 있는데, 0.7버젼으로 가면서 KServe 로 이름 변경함
나는 안 바꿨음..
1.2 Kuberflow 와 비교
일단 kubeflow는 사용하지 마세요.
그 안에 뭐 pipeline이나 notebook 기능 등등 다채로운 기능들 하나로 다 짬뽕 시켜놓은 것인데..
문제는 그렇게 짬뽕 시켜놨으면 관리가 잘 되야 하는데 안되고 있어요.
버젼 업그레이드도 느리고 .. 그냥 KFServing 만 사용하는 것을 추천 합니다.
1.3 Install Serverless KFServing
먼저 Python SDK를 설치합니다.
$ pip install kfserving
Serverless Mode 를 설치합니다.
Serverless Mode는 반드시 Knative가 base를 이루고 있으며, Knative의 제약을 받습니다.
제약을 피하고자 한다면 Kubernetes Deployment Installation을 참조 합니다.
# Serverless Model Installation
$ kubectl apply -f https://github.com/kserve/kserve/releases/download/v0.7.0/kserve.yaml
1.4 Serving namespace 지정
Kubeflow에서는 이미 KFServing 이 설치되어서 나옵니다.
$ kubectl create namespace kfserving
$ kubectl label namespace kfserving istio-injection=enabled
$ kubectl label namespace kfserving serving.kubeflow.org/inferenceservice=enabled
$ kubectl get ns kfserving -o json | jq .metadata.labels
{
"istio-injection": "enabled",
"serving.kubeflow.org/inferenceservice": "enabled"
}
KFServing controller 가 설치되어 있는지 확인합니다.
# Kuberflow 설치시
$ kubectl get po -n kubeflow | grep kfserving-controller-manager
kfserving-controller-manager-0 2/2 Running 0 3h55m
# KFServing 단독 설치시
$ kubectl get po -n kfserving-system | grep kfserving-controller-manager
kfserving-controller-manager-0 2/2 Running 0 56s
2. Iris Tutorial
2.1 Deployment
cat <<EOF > sklearn.yaml
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "sklearn-iris"
spec:
predictor:
sklearn:
storageUri: "gs://kfserving-samples/models/sklearn/iris"
EOF
모델 배포
$ kubectl create namespace kserve-test
$ kubectl apply -f sklearn.yaml -n kserve-test
데이터 생성
cat <<EOF > iris-input.json
{
"instances": [
[5.0, 3.4, 1.5, 0.2],
[6.7, 3.1, 4.4, 1.4],
[6.1, 3.0, 4.9, 1.8]
]
}
EOF
배포
# sklearn InferenceService를 배포합니다.
$ kubectl apply -f sklearn.yaml -n kserve-test
# Service URL 을 확인합니다. (URL 뜨는데 까지 약 20~30초 걸림)
$ kubectl get inferenceservices sklearn-iris -n kserve-test
NAME URL READY DEFAULT TRAFFIC
sklearn-iris http://sklearn-iris.kfserving.example.com/v1/models/sklearn-iris True 100
AWS EKS는 ingress 를 외부 연결로 쓰지 않고 따로 LoadBalancer를 지정해줘야 합니다. ㅜㅜ 개불편.
(GCP는 ingress 설정하면 알아서 load balancer 잡힘)
$ kubectl get svc istio-ingressgateway -n istio-system
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
istio-ingressgateway NodePort 10.100.200.170 <none> 15020:30234/TCP <생략>
필요한건 NodePort를 LoadBalancer로 변경해주면 됩니다.
$ kubectl edit svc istio-ingressgateway -n istio-system
type: NodePort
를 type: LoadBalancer
로 변경해줍니다.
이후 다시 service를 확인해보면 EXTERNAL-IP가 잡혀있게 됩니다.
$ kubectl --namespace istio-system get service istio-ingressgateway
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
istio-ingressgateway LoadBalancer 10.100.200.170 ****.us-east-2.elb.amazonaws.com 80:32051/TCP,443:31101/TCP
2.1.2 Inference from External Source
- INGRESS_HOST: Load Balancer Hostname (ex.
a0e3184ae3-1490218815.us-east-2.elb.amazonaws.com
) - INGRESS_PORT: Load Balancer Port (ex.
80
) - SERVICE_HOSTNAME: 모델 서빙되고 있는 주소 (ex.
sklearn-iris.kfserving.example.com
)
환경변수 설정
$ INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
$ SERVICE_HOSTNAME=$(kubectl get inferenceservice sklearn-iris -n kserve-test -o jsonpath='{.status.url}' | cut -d "/" -f 3)
Inference
$ curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/sklearn-iris:predict -d @./iris-input.json
{"predictions": [0, 1, 2]}
PostMan
- URL: {INGRESS_HOST}:{INGRESS_PORT}/v1/models/sklearn-iris
- Headers 추가
- Host: {SERVICE_HOSTNAME}
- Body에 JSON형식으로 데이터 추가
2.1.3 Inference from Local Cluster Gateway
Cluster 내부에서의 통신은 위에처럼 외부 load balancer를 타서 통신을 할 필요가 없습니다.
즉 내부 통신을 이용하면 빠르게 데이터 교환을 할 수 있습니다.
먼저 내부에서 통신할 URL을 알아냅니다.
$ kubectl get inferenceService -n kserve-test sklearn-iris -o jsonpath='{.status.address.url}'
http://sklearn-iris.kfserving.svc.cluster.local/v1/models/sklearn-iris:predict
이제 특정 Container로 접속합니다.
아래는 예제 이며, “sklearn-iris-predictor-default-***” 요 부분은 pod 이름입니다.
$ kubectl exec -it sklearn-iris-predictor-*** -n kserve-test -c kserve-container /bin/bash
$ curl -i http://sklearn-iris.kserve-test.svc.cluster.local/v1/models/sklearn-iris:predict -d @./iris-input.json
{"predictions": [0, 1, 2]}
2.1.4 Performance Test
위에서 배포한 IRIS 모델의 퍼포먼스를 측정합니다.
$ kubectl create -f https://raw.githubusercontent.com/kserve/kserve/release-0.7/docs/samples/v1beta1/sklearn/v1/perf.yaml -n kserve-test
$ kubectl logs load-testpk9r2-wmknb -n kfserving
Requests [total, rate, throughput] 30000, 500.02, 499.95
Duration [total, attack, wait] 1m0s, 59.998s, 7.861ms
Latencies [min, mean, 50, 90, 95, 99, max] 3.293ms, 8.509ms, 5.778ms, 15.34ms, 21.869ms, 47.731ms, 155.37ms
Bytes In [total, mean] 690000, 23.00
Bytes Out [total, mean] 2460000, 82.00
Success [ratio] 100.00%
Status Codes [code:count] 200:30000
Error Set:
2.2 InferenceService with Custom Image
Flask App
cat <<EOF > app.py
import os
from flask import Flask
app = Flask(__name__)
@app.route('/v1/models/custom-image:predict')
def hello_world():
greeting_target = os.environ.get('GREETING_TARGET', 'World')
return 'Hello {}!\n'.format(greeting_target)
if __name__ == "__main__":
app.run(debug=True, host='0.0.0.0', port=int(os.environ.get('PORT', 8080)))
EOF
requirements.txt
cat <<EOF > requirements.txt
Flask==1.1.1
gunicorn==20.0.4
EOF
Dockerfile
cat <<EOF > Dockerfile
FROM python:3.7-slim
ENV APP_HOME=/app
WORKDIR \$APP_HOME
COPY app.py requirements.txt ./
RUN pip install --no-cache-dir -r ./requirements.txt
# Run the web service on container startup. Here we use the gunicorn
# webserver, with one worker process and 8 threads.
# For environments with multiple CPU cores, increase the number of workers
# to be equal to the cores available.
CMD exec gunicorn --bind :\$PORT --workers 1 --threads 8 app:app
EOF
Docker Build
- 아래에 andersonjo 라고 되어 있는 부분은 Docker Hub의 ID를 넣어주시면 됩니다.
$ docker login
$ docker build -t andersonjo/custom-image .
$ docker run -d --name custom-test -p 8080:8080 -it test
$ docker push andersonjo/custom-image
Custom YAML
cat <<EOF > custom.yaml
apiVersion: serving.kubeflow.org/v1alpha2
kind: InferenceService
metadata:
labels:
controller-tools.k8s.io: "1.0"
name: custom-image
spec:
default:
predictor:
custom:
container:
name: custom
image: andersonjo/custom-image
env:
- name: GREETING_TARGET
value: "Python KFServing Sample"
EOF
Deployment
$ kubectl apply -f custom.yaml -n kfserving
$ kubectl get inferenceservices -n kfserving
NAME URL READY
custom-image http://custom-image.kfserving.example.com/v1/models/custom-image True
Inference
$ INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
$ SERVICE_HOSTNAME=$(kubectl get inferenceservice custom-image -n kfserving -o jsonpath='{.status.url}' | cut -d "/" -f 3)
$ curl -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/custom-image:predict
Hello Python KFServing Sample!
2.3 Autoscale InferenceService
2.3.1 Create Inference Service
autoscale.yaml inference service 를 생성합니다.
cat <<EOF > autoscale.yaml
apiVersion: "serving.kubeflow.org/v1alpha2"
kind: "InferenceService"
metadata:
name: "flowers-sample"
spec:
default:
predictor:
tensorflow:
storageUri: "gs://kfserving-samples/models/tensorflow/flowers"
EOF
cat <<EOF > input.json
{
"instances":[
{
"image_bytes":{
"b64":"/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAErASsDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwC9A42ir9vA0nOOKxYJhkDqe1bNvO0ZAYdaIsC8LLjOwH60yWDAwY1/75qzDcDAz0qfhl55BqxGE1pCzZwVPt0qJ7MgZQbh7da1Z7bncBVQgoaVhlGFvKlBIwOhqxPFxkdKmdY5xiQYP94daaqtGPKkO5P4X/pU2AoKMMQatWv+tAPXpTJ4ipyBTVYqwYHBFTezA1ivHNRsuRU1tOlymOBIOo9aVoyGNaCIEHanEEEMKXbg07BAx2NICXO5KrvwcVPEcDFRyD5qTYDYhuPuKnA4waitxmQj1FWGX9Ka2ArODzUXU5qxIM81AODzUtjGzHMfvVRcl6mmOMio4V3PSAtwjBUd60l+6DVCMAzH2q6D8v0qo7CIJ3xmsqQ8kmtC5YAVmyctntSbGRkDOT0qWMFyABUWNzD0q5EuxM9zQgJQAqgCkJxS9vemMasA3c8CpFPHNRBgBkinBvSpuBMGxRnPWo1561IOlMBQMEU2R8DFKW2rk1XdsmgCN+TmqskuHIqeUhVNZMkoZyckZqQILTi5UntzWtHMOVbpWQh2zCr6jIBpRGzUjl2jBPHY1chuSODyKx4pOzdKnVyh68VYjbDBlyvSq88G4bhVeG4Kkc8HrV3eGUEVQjLkUr+FRmQgYzV+aMODxzWdIpU0mMerh1wahdCpPvTN21gQamB3jB+qn1rOQDI5GjcMvBFbdvMt1FkfeHWsJhzU1pcG3nDZ4PWlGVgNd4+MigL8uKscMgdeVNRsAORVsRGFwc1G45qfKg/MM/U0jLG3RQPxNS2BCh2OG9DVxwM57GqxRQc8j9asp80I5zjiiIyu64zVdhxVtwMVVak2BUlOTUlumATTXXmpPux0r6AS2vLv7GrLNtFVbM/K596knbgGqT0AqXLZeqbgsRU8x96hJzgCk2A+JPmA61PA4mUSL9wk7fcetULtmEMdvGSJrltgI6hQMsfwH6kVqRIsUaqgAVQAAOwFUgEJ7UwDOc1Ky55/OmtgcCi4EZ6UqqSc0Hk4p46igB44pQaaM5NI7hVx3qkA2V8nHaoAdzE9hTZHOMd6ZczfZoQq/fNDArahcgAxLyf4iKzs0OxJ5696ZUDQP97NaVsdyg+1IPszHlFzU8SRg4jGB6VSQh3linp02mpQm5enNJs9aoBoynfirMFwVOD0qADjDUn3W9qANIsGGQeKqXCK3PekjlIOCeKfJyN1AGXIMZFNik6xscc5U+hqxMgbPrVFwVas2BezvXOMOPvCo2GD7UyOXOG/iHX3p8hGzdn6Vm0M0rG8ZLYxtzz8pp0lyx/iNZUMpzzVkturURKZGP8AEfzpRMw6Nmq5HvTMspz1pAaUVzzhjiptxjPmRnjuKyBNzzxU8NwUbDcqaXoBreYJU3L+VVn5zTEcRvkHKNUjcE4qZdwITyabK3yGpG4GaqzN+7qG9ALNicwn/eNE75UgU2zb/RQfc0krY4rS+gFZgcc0iKM+9Kc81FcI727QxnDyjbu9AepoWrAZpv8Apt7NqB5jA8mAeig/MfxOPyFa4HFQ20KW8KQxrhEUKB7VYXFWAvlkhSDx1PvUchwSAKlD7Uyep6CoS3UnrU9QGHg0DJ5xSb8mjdjvVAOZ9oqs75JOaJX3Hg1GBmmAKRuLt0Xms24lMshbt2qxezgDyEPuxqkxpNjImo4pGOOarmbk0gJvMINWIbp42BB6VBLC0Z9qjVsGjYDqrWVJ4w6n6j0qcxbh71ztndtbyBlPHcetdLayx3Me+Ns+o7irTuJkDRDvwaYVIODWg0IYc9agkgBGDTEUyCv0pwc4wac8ZTg9KjYFRSAil6ZxVOYZFXGPBBqpKKljIFJB61KzFlqJhTkbPBrO+oxysR0qwrkjk1Wxg1IoPBJ4PpSc7BYkOfU0zzHXvke9WNuFBHQ1A/BrKVRoaQm/dweDShyOOtRZB+tAPHNSq6HYv203/LNuh6VeVvkweq1ioxB+lacUm5Nw7jBrVTUoktEsp+SqNw2F4q1I3yCqM5yQKwchpF62Yi0/GkcHgmkh4gAoOSK1UxEfVuKdbKZH8zseF+nrTGO0qo6scVciXgYrWG1xDxwcUm/GQKc3FVS3J5qmwHmUkknoKYXJGaZuBzTd1JMB4PBzxUUkhPApWcnpTFUk1SAdGrOcVW1S/TTbbIwZW4Rff1rQXbEmSefSqC6bHPdNd3Q86U/dDfdQegFUBkWYurnlI2YseWPetSPSZW5llC+yjJrUVABjt6CnHihJICkulWqcsGf/AHjUwt4QMCGMD/cFSM4HWm+YKq4HO/aAww3NRuqtypxTNpFIMisrjFDFDg1ctbySCQSRsQf5/Wqm4MOaT6GlewHY2OrQXWFciOT0J4NaDRq68/nXBLIRwa0bTVLi2wBIWX0bmqU+4rHSSQcFW5HY1TkiKZBGRUtrq8NyNr8N6VaYJIvysCPar0YjGdMDOeKrSL6ng1pXFuUJxyDVCSMgH0qGMqMvao84NTOp61XYkHmspDRYXBxnpSFjG2DyKbEdwK96eR5ilT95elZSKRYglBHlseD0NJKpU4NUlk2nB6VcjlEq7HPzDofWsJTvox2KzcZojbccGnSrgkVCpIkFcdaorblJFg8VctHzlapBs1Ztf9bTw+K01CUS07dvaqMh3TqKulSSTjPHWqCgGdnzkKOtYLGxbDkZoxnEYqR4j5e4HPqKrwncAO2M1X1jVRp+lXFxn7inHu3QCu6E3JKzIaC1lF3qk+05jtgIh/vnlj+AwPzrXUYArnvB0LLoUMshJknZpXJ7kmuhLAZxXcpIgimYjPNVd3HWpJnLHFQgcYp81xjht7U4AGkGFpDPt4QZNaIQ9YiRnoPemng4Tk+tIFdzmRjj0p5dEHFWmAqRfxOeakyAOwquZ93Sk5PJouBM0uKjMrHpUeRn5qQydhRcB3Pc0vHrUYJanbT6UwMX6ikKelafA/gX8qRljPWJfwzScAMsxjNJtx9K0Ht42HykqffkVA8DpzjI9RzUOLQ7lXbijDdRU2zIppX3qRipJ0z1rQttQkj4Ylh655FZjLzQMryDRewHUwXyTphiDnof8aZcQYO5eRXPw3BQ5U4Na1tf5Xa3I9KtSuTYgkjK5x0qpIpwM9K2HRJlLIefSqEsRGR+lRJAUVcxuCO1WpDlROn4iqknTp0p1tPtYo3KNXJOdtGWlcllUMBIvRuv1oGVOD1FOWIiRIz91zgH0qS6VoNwaMgKeJQMgfWvExGK960TeMRpPmqMnD4796JIQsf7s5lGAQT61YeSOS8SFwFkH3WHRuKq6fFJdajMZ3aMRtgqByT269q4nUnJXb2KskMjUiIS7sl32hfTtWhaArIQ42kdaaY/7PvzG6+dFMSWfHC91+nvS2e+Sab7QORNsUZwG7jn0xmpc3a6FYnDpC4lDEl/4G6DtVa5UqRDEADKTj2Hqas3Nkz6hGZGxCFJLL/FzwKluIykkQgQtC53N3Kn0+maxUrNMvRoiEZWPapAJ71keItPkvdPYiNnjg+cQjOZT/8AW61uOY1cGUcryFzUgkZ0JVsDtXfDGWmm9kZuGhX0qJLXT4IACuyMfKe1WZJQFOKiKlSCWycfnUUjjua9ali41PhZk42EbLHNISFFM83nA5pVXPLV3Ql2IaDBf2FOykQycUySUIMDrVZi0h5NbJiJnuGc4WkVWP3qYo29OtSKrt34q0wHhgo4GaCx/CnLCw561OkJP8NWIrBd/apVtj3qysI74FSZjTimBElsO1S+QKQzf3cCk3v60AUiqEcVG0R7DNPIZT92kLY5yRWgFd0I7UwMyGrLHPYGoXQHkVLAYYUlGUwj/oarMhRyrqQam3FDU6yRzoEl7dG7ioaTAzyuR0phQ+tXJreSLn7yHow6GoNhas2h3K5UA5zSrIUI5qQx5qIoBwRUMZehvMEZbB7GrS3Mdy/lMQk3YH+L6HvWJnHHpSs0c0ZinBKeoOCp9Qe1Tz2CxcvY2jY8VXgYMrhhhf73pTY728geO3ukW9tXztuPusvfDe9aECQmMqE3I/OD1FeVmFaKVlua049yNLooVjLD5MMcjORmrZN3LfmHzVjg2bn3LkMvp9TVeS6htbNXSNTk5RiPSrdhdx3ds0lztIcHJHHHt714cr/FY2JTbwGzDJ80kBym48/5xTZHzLFLLEygryw43+lFvJa/YZF52AZEh5IIpkN6k2yCcOcHdtIxzUaktl10gup02zMqlcFRyM0omRElhk25QYGBzu9qqLav9rl+ySII+q7mzz6UxHiXzYbkL9oHzGQHnd2x7VLj0Fc0Fml+y5kjbY2OT/CakaRSEMY/eE7do71krqBkgWNllCzMOdp/P0q35aQPEYHd9wKlSMnjvUuFtykyeW1ju51WQsjIm38e1V5LWRSiGcDy+Hx/ETzmpxK0kgl2ERYwzHru+lJe2pn8trc4kzyC3BHrSTa0ZRG7IkQIbcvTJ65qsUeZ2H3VXqT6065kkSfyIrZiQMFmHHHU06TKWyq7ZbGSfU16GB91uUnotTOYxIVU/eyaSRivFAxgHOaGw3yn8K9+hVhWjeBi01uQFWY05YSe9L5wXjbUiTqeq4+ldcSWSRwkdRmp1RVGW4qITf3TxSg7jljWqJJRJGvTrSGZj0OBTfK3Hini3brV2Ab5jNxTgCetSCE9+DR5ZxinYBAqjmjzVpPKOOtHlU7AVRLwOhoyHFZyuw6VMsz9aq4FghajYYHBpPNzzRvDD0pMCB8HtioiQOhqV1Peq0kZBz2qWBbgu2i44ZT1U9DVwWttdjdAxjfvH/hWGWZDx0qWO4dCGBII7ip5h2L82nlTgvtP+0KrPZSjkbH+jVft9VhnTyrtQQeN4qO7025C+bp06TL/AM8pDj8mH9RSaT2AyJo2X7yEH3FVJJFUdeadN4hlsJvK1Kxnt+cbiNy/nTzf6XerkBTnupK1yVdFcpDdME8935SofKP3s9vetcmCxTZcDcm4/Oh5APrVWK4kuA0dtHjbznODTzAbiaGV0EinO5Dkfn+NfN4ibqTvLRHTHRE8losVspkKT23VY+4z3z9Ka8FvayRyQiT7G/OGHCmp44omsnW5LbsHdGrcLjgfXtQdQVdOkhYeblNqoozx9K57vYTIbmWAT2zoGUOSGUDCk9jS3Fwl7fpsuFjZUAdgM5PSobm/hmsIbZnVmaQEJjgge/arN1FHdxWoh8qBgx3N/s/TuelVta5DZWN79gmliMgaVMkcEBqnhube4s5FmTMjjcGbruPpisvVIn0u5jE9wkz3PAcLjaKkb7Pp8kEkL7lkByHP3SMcj3q+RWTW7Iua0OpLJYzQyZ+VMFAMMD2xn3plnfva3Dw3aeXMg4UntjrVC9vXk8m+ijXbG20kA7m96fNqCSz29y6EmL5Hcp0zjGah0tNtylI14dTVpZHPIz90jk1Na5aLzvNBc/MExwB6fWq7zW63cExVBI8fGO/PFSXksUcgMZbMv+s2jhPeudxWyNUyO7vfOuo0BYKAGc+vtUVwr3upCFNywxrukfH8q02mha0kAjUqqZB6Z46VAl15kGyFQCVOBn+tVSqcmtgavoQtDDgorlSOnOahkzCu6QjaOd3bFPQmGVEeAmM43yZ6+uKknaPa8IAdG4OfSvewlanJ6JL0MZJmb9ttWOVcyeyKT/TFC3Fy5/0fTZCv964kWIfhjcf0qyMRjCKFHsMU1mYmvWi0ZsehuMfvPIiOekbGT9SF/lUhl2+hqDDkU3Yx5NbJiLH2kjocU8XLf3jVUITRsNXcRdE7H+Ol85/7xqmEYdDThuHencC557g/epftL+oqllqTLU7gQKvNPCkHBNOVkIG5amVI2Aw2KYEITqKTYQfSrnkHqMGlMB/u8UgKTKfc00oSORV4REdRQbfnikwMxoh0IqJodp+WtY24I55NNNvj+GpaAx2hYcg0+C5ntmzHIw9uoNXmtjk4FQSQbe1ZO62KRZTVbe7Qw30KAHuRlTUN5YlSj2RhEWeU8sFT9DVCZAB2qvDcSQMfLkIH90nINcmJqtQa6lRjqaUTNNI1rtWJ8E7umfUVIoffHapcA7Ry5GCB/WoLC4juhKZGjSUHaoc4/HPTFVPImsbo3VyywhMjy2OSwPpivm3FuTT3OnoXLuAxTC3FzuWYFtxGDwelN06eHTmfjYe4cckVMyiOSO4nlWSXd8qfwjIqS6uYZb+1V9nmxhjz9OKm+ljNmJetBJqdw8mYlAHl4UqPekt5tQnuVeOESW6ggEN6VY8Tajb6nHBYxnE5bJbHQVDpMdxbXCWECmYjJGDwfqa6Uv3d2tfP8yGJBqcWpTvHdw7Y0G1S33vfH5VB/ZN5GrtegPDJ8lsQ3IPbP1qxc6PEbGW4Fw0FxHlnjK8euKqy67P/AGfBEkb/ALyQYJGFBHaqjr/D2/IhmlYvcaVcpHeRqpC5A/hI+vrVy1vree/vgPnWQj91jqMAdPrVKG6XVZYoZ2ZPJ+YHg7varl8sVlqdvNZkuZ1KMMZIA57VzySbs9xok0/ZCstvdQsuCRtk6qvbBrQWxKwFldjC7fOCfnVewqnA1trLkytiZMojdCh9SO/NT28k8pksN+LhfldsHGPUf0rCd73+81iaBitksnOPlRSWUnhlxVKxaJnCR2hjTqrO2SfpT2tJlb7MzLJCQCW3YJGf8aa8aWDhZWdl6RcYI+prJbWuakrNiCZdwfa3y4+g/wDr1EkYI5/OkjCG1OxtoLDrT9siDBU49ua9fApaNGM77DvIHrxSiFD1wKZ5rZ9KUEsc170DFj/JGeBSi3p6c8ZqYLnoea3RJWNsMcUwwe1XQhPUU7y+MVYGeYcUhirQ8oDjrSGIdSKYGb5dJ5RrQMIPQU3yPaqAykjPpU6R1l29zOhAT5h/d61s28jSLl49n1NNO4CqpHQ08zGPgcmplVT3psiLTsIbHdIxw6496tCNSuQAR6g1mSpg8Ypsd3JC3ysfpSGanlD0pjBV6kVB9viuE2Sh4mP/AC0jP9Kgk02WXm3vkm/2WO1v8Kl+QE8kkXr+VVnngHVAfqaqTaZqEWS8Dkf7Jz/KqLiQZDRupHqprCU5LoNIvy3cfRUT8qpl43kG9FC9ziqbS7eM0eflSvXNefi5TlHQ1glcnu1DeXFbhDvPDHt70+5toZWG26jeeDBUyc+Zj2HP6UkMUJieGEM08gyAR04/SqcNtDYXsVzPdr52SPKAzgnjqK8OPrt+JsTBvPuRDdRPEoG5se/Sori2jsZZFeYusg3K5649KtXLPeX0QikChMh3xnI9qy9ctZY9RiWdzJbsu5SOBmrpq7tsZyNEHTbfRZF8tRJtIEnVmPaq1ldtpzjdJkS4IYDkN6fSqul6XaXBkMrtuJIQZ4X3qndLKLuWISGUQpuDIMFe3Pr2rRQjJuN7kGhrerx3LyNEMoRtlYfxN7Cqtiw1eeGzm/dQRfOXHXPQAVGLL9y7yFEeNcqAfvZ9ahluvs9ukcKmK5XBwBwRnk1pGKS5Ybg0dJZG0jtpIZo8BWPzg859aS2ubi2vY5bmMIJlzC56FQeh9D7VmWIE9rJO75kzkN0GRWhLNeajosyx2jTBfmIf5SPcVzyjrZiHyXTx628kUQ8iYgGQdA2Oa2pIUWKO5tpHNxwjlv4/rWNp0M2raaFtisYUhgX7MK0tPiluoj9omEc8ZZQo6bgec1hVVvloaRZZmWW1jFzNIhiYbWIJ+Q1E01rqN0oeSR1UcBBhc/jz+lWbWKa8jIZAsQOJFc8v7AVS02IxFHkCozE+WhOSR3rFWs31Rqi7A0LRSLblWBGACw+U++Kqi4uI5WRAzhTjIU4NTzzWUEx/erHu6j3Hf9azl1GVh8x4J4NdeCS573aImaS3Of8AWwMPcCp0MMnKPj2NZi3b/wB6p470j70aNX0tKatqc7RpCNlORyPapApzmq0N1bN/ejPvyKuo6EcSK1dSVyRytinja3UUmFz1FL8o6EVdgHgKKXYDzTMgdx+dAkIosA4xDsKPJpPN9qPNHrTA5tBs4Xge1So5HrTTG5HCmmiKQ1QF2OUHgnFSk8etU44znk4NW1QbeTzTEV5Bmqrrz3rSdFxxUDL3xUtDKBB7UbmXoSKtNGOuKYYx6VLAE1C5i+5Mw9qe2r3OPnWN/qtRGIdqY0Xqal3AWXUYHH72yjPuKoSzacTuEBQg9hT5oevFZ8sLHPFcde7VmXEn/eeYtzbdeQDnFPu7KVZo5UkhLxsCD94OfbHWqUbSxgx5zGex7VYa2l/s6NxM0pY/u1QZI+mK+dqRcJnQndGhePGbQO2yMR/MvOM//rrOtymqTML5CsbMNik42iq0cTx2ciXAledJVJjbkIvX86YJUmuw5Lquwgdt/wBPWkoct7feTIfYQ20cs+/zwsbsTsU4I7HNJLo9zY28+oROHSVsuO6qff1ratLiA6O0cpHkiPGdwB4//VVW0uWmsxazo/lzZBcnoMfzo9pK7ZNjKvbeC3KusjzRsnC9dvp+FVHhj+zRsvF2W2kdSR3/AAxW42nyaXL9ktla5gnXO6Q8r+fasW3MqXbwsoM7AgZ4xj6/Wt4Surp3GQ6fFK8skUrEKW+6p4BroLLUpo7l7JciUJkuT8uK5mO21CPUGO8tKnLFDnIqzHdOmpSOJCAVG5mHJp1aanfroTY6K0uDpz/ZCWIGXDp3z6+9WLF7i9vLohkiBfKt6ZHSsHQonvdRmubySRguAFJxx9PSukhsltdRk+yN8kxBCHsTXHWSi2upcS3LMdJkiSWT5X4STt+NUY1k/tF4CVBtiWjdTxIjc8ep57U3Uzf7lR7fdCGyCg3dK0LuaKysYVcDzCwWM7eVz3rFaLu2aIpzWUcTPHdReZFIN6S9Gz3z71Sm0+SNRJC5mg6hh1H1FS3LzvcrNNcJKpGFIOFGDyMdj0qJFubWZpbdv3bHJj6r9R6V6OC3tIzkuw1M8c1MrleCaso0F4uWType4Hr/AFpklnJGN33k/vCvbhDsYtiLLz1qZZcdDVbbkcCnAHtW8SS6s7DoxqZZz6ms0PjrUqyVqmwNETE9zThKezGqKy89alDe9UmIti5cd81ILs+gqiGpd4qrgSC4hI+9SfaYecGssI1OCMO2adwNDz4ienNPE47CqSIT2q1FCfwpgTGTd3xTTz3qVIgKlEQ7UxFXy/SnCLParax47VMsakdKVgKItQad9i9av4A6CgjNS4gZUlkDxjNUbizCg5wAOSa1r6+t7NP3jZbsg5JrltR1Ca+yp/dxdkHf61hU5UtSkmV5prWRinmYj5yw74qKUyCNYbW4KKRwu7H41UWFmc47dfap7aJ5bwY+Zdp3c8189iYWnzNnTF6WHWt3BZwtbvJvn5J2Atkn1Nal49tdaKN6JuhT5Gz0z1Hsax4IBaXztIuUYbd392kupLaK4SRJVZUO5152nH9a5nFSkmhstyWMFxpyQwnDMR5f/wBeoL++utPgt4ZIkw7ArKG+X3xVgSpNJBLYoZTgsQPlO08d6ytZvTq9qbeFNkdq4355PPAIPpnj64rSlFylaW35EMty31ydUTYyOHUDviMU24kuBDJbG0mdo23m5Vcqozyc9/oKct5ZyaD5EETmXAwEUhg44zmtXSdSh/stLedlLbPLkXqzk55x1NKT5FdR2AyIMLcuYZwUCgs55JaibRp49MM7zI4yGYAc8ntV2Hw1DFpzm2u9kj/vA7DgL6GmWp1P+yWHA2pmNxxkgcAj86PaXd4PqFjVleCLT2n2YaNRtK8MQKp6XqM020mPczyEluwH8+P6UzTFuDp9159s8t42XiMg4ZSMEfzqTSrhNTsrqyMUdtK6HDdAD/jWDgkmnrqWhZXv4tUMrMwRslGU5GPatO5gklaK4wJjt+cDnI6jHrWZps88McNnKMCJXRyeQw7Y/WpVvbqynIIV4WO5UIxtB7D6UKnzTUU7D5rIsX1vFqESmJlSc/dbOAf9k+lYkTy20xjdWRgcMp4wa12tbbUpfPspzbXf8SP91/qP6ipJrZpcRX0RhnAwsvUH8e4r2sNhfZxtuYylcpiXOD1PrV63vcEBzj3qhJDLaNslXGfusOhpEkB4rtjeJD1NkxRycj5Se46GoXt2U5x+VVIrhounK+ladtcLKOPxU9RXRFpk2KZiI5IyKaU9K1WgBGV6GoXg9sVaQijgqc1IrVIY8cVGVwaYDw2aN3tUfIOMUZx1FMColwelTLcetY8EzMil12MRyKtI/vVJjNVJ6sJcZ4BrIV8fxVMk2OlO4jYS4Gcc5qdJWx/jWRHcE9MCrUcjN1ancDSDnuRUitVISKg3OwAHcnFQTauqjbANx/vEcUm0hWNZ5khj3yMFHqayLzV5HBW2XaP75/pVCSaS5cF2Lv2H/wBanraTN94rEPVzj9Kzcm9h2KMgLOWclmPJJ5NMispbs/IpCeta6WllEMyFrh/TotLPMzx7eEjHRF4FZOn3Hcx5beCBcMd2OiL0/E96zri6k6Q/JngBa0bqMYJNUU3JcBYY98jDCrjrXFXg+iNIsqbbrbHGznjgA9s9/rVu6sopIo7bcFt4z8zL1Y+/tV2a0EUCNcYeQDkZ4qqLh50MBUfLli/oo7f0ryqlKpFq+5opJk8NjLqdvLcRwxRAjYrg4woHU+grHmt1tdFuJIiRbtIPNbPMuD8oX2J5/Crbx3Oo6WzjfHHI5IROFYD19aFtfK0R/MkEqRfejJ/iPQD/AD61nB8ujfXYe5HGFn8PGHTS0JmfLGQ8r0OM1c02EmTUXhnie7eMJFt5wcYYj86ppNqEcuLe2BtLlVBQj7uM9PSrSSHS7iK8MLbZplXy2Od2Rg49MD9cU5t2aXXX/hwSGH7Tp2gW0UluxYytG28cBc5x+PrWxFdb7dmtoZjE6kR5GSB0/Qg1nWLtNrV2ZhvhY/JC/IxngAU2Rv7S+aKV7ezAbyVX+IBiCD7ZH61lOKk7P1v6jSJbfUdUknaARIG4UkKScDv+NXLCG2mvJpEjLZdmDdmGc7x7+vvVH+0jZazCiZaBIkDKRyD3x+OKtIrmUgYJD70QDgxtnHPfP9KicdNrXGMuruKe/jmRCPLYDPTI71PehhJluR2rLinxNIjLlCxwO4rbhxc2a5O5lG0n+tehhsLrcznIz1GDuGQ3Wtez1QhPJuR5kXTJ61mvGUbHSmjj8K9SneBk9TpPscFzbkQuHjP8BPT8e1Yl5pz2bFgCY/UjkfWi3uXhbKMVP1rUi1NpF2yBXHQ5711WjJE6owgeeePrT1ZlYEZBHStZ7fT5udjQk/3Dx+VQPpqE/u7kH03Cj2bWwXLNleiQhJCFY/ka0Gi4rDNjMvRkb6HFalhcvgW9wCrjhWPetI32YmDwioHgz0rTePNQMuKuwjKeEjmm+Wa0mjB7VEYOaLAciBTwxA60pX0oCVBYqyN3qQSEdqjwT7U4KR0paiJ0uGHQVMLyY8LxVUDHWpFzjHXPQDvRdgSmRmO6Qlj6ntVy2s2lAd/kQ9B3NPtLEIFknAz2X0q8TnhapR6sVyEQiJSEG0d/ekEZ/CpxGep6UpPbFOwiuI6jljwOetWSCBmq0uM5zxUtDKM0TSuscalmY4AFaVvYRWEJPDSsPmf/AD2qzY2/lp50g+dhx7CmXj449qhxS1C5g6g5lc/3RU2n6YptHkuB8snUHuOwqWO0Nzcqh+71b6VpXK7k2Lwo4Fc6pJtzY79DnL28nEj+S+yMcAYqsqg2gnmJkVW3yKeuR0rQvbUD5QKqTxFNKmI/vL/hXmYjDato1jIhsZDc2s0wfypSSsag446ULp8MtzBh2PkoN3s3p/WmwxsbSJVGGLFVA75rXMH2BYY4xnAO73NcyoVHzOJfMjOa+hkQpLGY9pZS6KeG7HNPsw9ksdtKo+yWzM5P94MD/ImoJ4AZSSOSckGtJIftGnvGRmRUIX8ulNYZuNkg5tSOaWOe6ilt412ttQkjtmogkmnak7x/xZHPpUGmyAEQsTw4Zfz6V02pWAY7wPxrqw2D91qREp6nLSoRLkjk81oadP5MoVj8j8GmXMJB5FQbSGx2rtjHkehO5vXNvuGQOaznQqeRWjpt2J0+zSn94B8p/vCn3FqRniuvlT1RBkinq5HtTniKE8UzGDQlYLlpZg3B4NSiXFUgTUqscVohFoSZ6GpEmI4PI9KqA5pwY1SYG/DOJUAPWnOtZNvcGNhnpWj52UDKMjvVCGOtR/jUxkVqaVGaAOU8s96UR+lTDHfmjAzUjItgHWkK1IRTcjtSGN2/hWpY2ohAlkHznoD2qCxtwzea3IXpn1rRxk04oQ8ksetSLGKRIwe9TFcAAVYhp4HFAJHbmpQnA9ajkzyAaTArvhs+lMihEtwoxlRyaGHBPartpEIodzfebk1G4EsjhEz7cVkykuxY9e1Xbh9zEdhTLWIPJvP3V6fWolq7DC2hMMOMfvG+8fT2qb7P/e5qdU4J6AcCpjHhQcU7CMO9h3MTj2rLvYtunMv96RR/M/0robtADjHasfUF/dwJ/tFz/L/GuepHdlIj0Wx82VXYfLDkj6mtOa2Lv0qzodvt0/eRy7E/0q48YBAxzVwpJQSBvU5O8tSr9Kdakoy1sX1sOpFZJTyx+NT7NJhczr60MF84TgN86H612cDC+0+Gbj50BP17/rXP3sXnWaTj70R2t/unp+tX/DlySklqT935l+h61UI2k13B7Fe+ttkmMcVjSxlJOK7O8tw65xmudurYhjjtVSgCZQjchgQcMDkH3ro7O5W+t/mx5q/eHr71ze3axJFWLad7aVZU7dR6iiGjBmvPb5BwOaz5IipzitsMlxCJU6NVaaAOpwMGtrEmTjnpSqKlkRgQccios880rDJR0oBpEp7DPIpgOU81agnaM8niqPSnq5HemgNcbW+YdDUm32rNhmKnrxVoS8fepgYGQBTS5zxUXmUbsnrSAk6n1qSOMuwUVEpArRtY9ibm+81CVwJ0QKqqowBxVhIwelMQAnHep1wBgVQiRUxxT9nPJpiMfTJpxbPTigBXGBwaquCRkmpJGO04NVmY49qhgPiTzZVU9Op+lXZZAM1UtPlV3IxuOB9KJZAX46Ck9EBHIST3rQt4wkap36tVS2jMjbyOAePetSKPb1/GiMeoMcibm56CpXXI9qcigCkm4iNNrQDKusFyfwrJvQDPjsigVryYZxnp1rJ5mlyesj5/WsZrSw0dLYw+XYQr6IKc6j0qaMbVC+gpjjn8a3toIpTx74mB61h3URDV00iA8isq8h+UsB14qXEDNs2RmaCU/u5QUb2z3/CqVpI+n34Zlw0TlJB7dDVhl8t8Gm36b9lwOS/yv7kDr+VZtdSkdaCs0QKkFSMg1kXdttdsUnh673I1q55TlPpWpcxZG/HNarVXJOTnt9ueOtVNpXiuimgDBhisua1OCR2qXEdxdNvTbS7HP7p+vsfWtiYY5HQ965sqy9a1dNvRIn2aU8j7pP8AKqi+giSRBIMj7wqm6ZJBGDVyVdrHtULFXODwabGVFJXqKnVtw5pjrtYhuaFyOnSkBIycVHjHFSqcikZc9KYDQeafvPrUJ4NLvNFwME3IHemG9iTlpAPxrg/7QnbrNIf+BGpraR5ZQoyWY4FZ8wHoWnTx3cp2HKJyT2rdjOTWJpUC2tskI6jlj6mtpGAFaoCynB4HNSphScjJqBHwcipN/HuaYibzMdOtG4EYqEMCPencAHFIBJXAXHaoDlwOwpxy30pBjIHYVLGSb9sfHbpUagyuFHUmo5JMtgdBVqyjyTIe/A+lK12BegQAAAcAcVaUHNMRMKKnXGMitCSUDAqG5bjFTZGCap3DDGaljKFw2I5Gz2x+dUrRN17AuONwqzcnMeP7xqPThnUY/QAn/P51k1eSGjpM4HvUTHrTlPHNROeSexrckc/K8duaguIg8RHerIGUP0pjr8ucdKAOcuYjux3zUGzzIJIT1IyPqK1b2Hdll6is4fLKDjvUNDRSs7g2t3FMP4WGfp3rtjiSMHqCK4adNk7pjjJxXV6Ncefp6AnLINppQ7DYyaHDHaao+ScsOtbE6dGFUnXkkVpYkyprXcM4rPeF4XyMjB4I7V0YUEGopLVXBBHWpcRmfDdi4jCScSAfnUchwxp8thhuOMVE0Mu3ruxQMBJng80dDkdKrsxQ8jFOWQ9c0XAtA57Yp3eoVcHvUm71oAR1zUW2pjg0m2lYDxFQc1saGmdQiz25rPEfNa+iri9U+xrGO4Hd2bYArSjO41j2rHArSSTA4rdMC8JNowKcCTjmqqNuFTqcDmmBMCQODQWLcA8UzOeO1Ix7CgALYXimF9qZNVp5xvWFD8xPzH0FEkmSBUtgSpmSRVHVjW7bxhVAHQcVj6aheZpP7vArbT5acUJkwFTj2qBOmTUobkYqhDyflNUJznirjHGRVC4btSYylcHlR7Zo00/6cfZD/MUydssx7dKTTmH21vdD/MVmviGdErfJULHAIzxmlDfKKimPHHrWxJaTlCO9SDBGCO1QxN8n4VMBwPWgDPuo8ZI6VkSRgOCOhreuANprGuEKscdM8UhmZqCbLkH+8oNaHh6fbO8RPDDIqnqfIhbvgjNRafN5F9C3bdistpDOycZ47VQkADlfyrQPIyOtVLlAQHHUVsSVhgZp+3IBFRZwwJ6Gp044HQ0DIZo8jP51QkXYT7VrlQciqVxH19aGBlzqMhu3Q1WeLbyvFXJB1WoFPGKzkNFfJU09Zh3pzpmoHSlcZZ81fWk89fWqmD2pMUcwWPMQvNXrBjHcRkddwFUhVqDggjrWC3A7W2YgYrRjY4rMtTmNT32itJOgreIFtGx0qdSe/Sq0fT8amXk1YibJPPaqVzfAApFye7Ut8zARqCQrZyB3rO6jmonK2g0iS3bMpYntUzP3qCH+OpO4qUNnQadH5dqmep5NaAJ4qvB9xfpU461siCdTlQTUhOce1Rp92pOxoAbI2Kz5z8w/OtB+1Ztx95vpSYFKU5TNRWLldQUeqGpJfun6VBZf8hNf90/yrNbjOkV8pmoJXOCD1Bp0X+pqK4+6a2EXbdsoAatRnjPeqNt91aux0IRDMODWTcja49DWvN1rJuvvGgZl34zAmezGs8NtYEdjWhf/AOpH1/xrPHU1jLcpHbW0omtY3B4YCkccFT0NVNGJOmLn3q3J0rZbEmbJmOQoenUVLBJztqO+6p9aZGTvBpAaQ+YfSoJUzk1Knf6UjfcNUBiXSFTVHcUc+hrTvvu/hWY4+UVEhkoIYUx0psR+apm6VBRUZcUYFSuKZgUAf//Z"
},
"key":" 1"
}
]
}
EOF
$ kubectl apply -f autoscale.yaml -n kfserving
$ kubectl get inferenceservices flowers-sample -n kfserving
NAME URL READY DEFAULT
flowers-sample http://flowers-sample.kfserving.ai.platform/v1/models/flowers-sample True 100
2.3.2 Stress Test
hey 명령어를 통해서 스트레스 테스트를 가볍게 해볼수 있습니다.
- -z: duration이고 10s는 10초, 3m 은 3분
- -c: 동시 requests 갯수. concurrent requests 이며 전체 requests갯수는 아님
- -m: HTTP method. POST, GET, PUT, DELETE, HEAD, OPTIONS ..
$ MODEL_NAME=flowers-sample
$ INGRESS_HOST=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
$ INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.spec.ports[?(@.name=="http2")].port}')
$ SERVICE_HOSTNAME=$(kubectl get inferenceservice flowers-sample -n kfserving -o jsonpath='{.status.url}' | cut -d "/" -f 3)
$ hey -z 30s -c 5 -m POST -host ${HOST} -D $INPUT_PATH http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict
결과
Summary:
Total: 30.1505 secs
Slowest: 0.4009 secs
Fastest: 0.1899 secs
Average: 0.1944 secs
Requests/sec: 25.6712
Total data: 133128 bytes
Size/request: 172 bytes
Response time histogram:
0.190 [1] |
0.211 [768] |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.232 [0] |
0.253 [0] |
0.274 [0] |
0.295 [0] |
0.316 [0] |
0.338 [0] |
0.359 [0] |
0.380 [0] |
0.401 [5] |
Latency distribution:
10% in 0.1911 secs
25% in 0.1916 secs
50% in 0.1927 secs
75% in 0.1944 secs
90% in 0.1955 secs
95% in 0.1963 secs
99% in 0.2001 secs
Details (average, fastest, slowest):
DNS+dialup: 0.0013 secs, 0.1899 secs, 0.4009 secs
DNS-lookup: 0.0000 secs, 0.0000 secs, 0.0070 secs
req write: 0.0000 secs, 0.0000 secs, 0.0002 secs
resp wait: 0.1929 secs, 0.1897 secs, 0.2022 secs
resp read: 0.0001 secs, 0.0000 secs, 0.0002 secs
Status code distribution:
[404] 774 responses